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It is shown that the formalism of quantum theory needs modification in the 
case of potential fields swiftly varying with time. The necessity of a time-irre- 
versible "master equation" for such cases is discussed. 

The underlying idea is that any (sub)system will undergo a spontaneous 
transition to a state of definite energy in the process of separating spatially from 
the rest of the "universe," assuming the "universe" is isolated and has a definite 
energy. This requires what might be termed a "pragmatic" interpretation of the 
wave function: If a composite, separated system is represented by a linear 
superposition of product states, we may say that the actual state of the 
composite system is represented by some particular component of the super- 
position for the purposes of statistical inferences relevant to each subsystem alone, 
but the entire superposition--and not the corresponding mixture of the product 
components--must be used to compute the statistics of correlations. The 
considerations are illustrated with thought experiments which are real enough 
to make the application of the usual quantum mechanical formalism possible. 
Cases of disagreement between conventional theory and experiment in the field 
of interest are indicated. 

1. I N T R O D U C T I O N  

In  1935 Einstein,  Podolsky,  and  Rosen  publ ished a famous  theo rem 

(Einstein et al., 1935) known  since then as the E P R  paradox.  This  inap- 

p ropr ia te  name  for the said theorem was given, mos t  probably ,  because  of  

the previous a t tempts  of Eins te in  to f ind a pa r adox  in q u a n t u m  theory,  the 

statistical charac ter  of  which he  p ro found ly  disliked. Thus the E P R  theo- 

rem was misunders tood  or mis in terpre ted  f rom the very beginning,  which 
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is clearly seen in the series of early refutations: Bohr (1935) thought that it 
was a criticism of the mathematical apparatus of quantum mechanics; in 
the same line of reasoning Furry (1936) interpreted it as an assertion about 
reduction of the initial wave packet, while Mandel 'shtam (1950) explained 
to his students "the error of Einstein" by stressing that the wave function ~k 
refers to ensembles of identically prepared systems and not to a single 
quantum system, i.e., exactly the idea which EPR wished to convey. The 
steady flow of refutations of the EPR theorem continues to the present day 
and only lately some authors (Ballentine, 1970; Ross-Bonney, 1975) came 
to the realization that it is a just criticism of the idea that the state vector 
provides a complete description of an individual system. This was quite 
patiently explained by Einstein himself (Einstein, 1948, 1953), who pointed 
out, besides, that in such a case no proper transition exists from the 
statistical quantum theory to classical mechanics, which is concerned with 
the description of the state of motion of individual systems. So, it is not 
unnatural to assume that hidden-variable (HV) theories exist which make 
possible the description of the evolution of individual systems. 

The latter problem has evoked extensive debates in the literature. The 
earliest impossibility proof belongs to von Neumann (1932), whose 
mathematical genius is so impressive that for quite a long period of time 
his cited book was considered to provide a perfect axiomatization of 
quantum theory, thus making it a theory devoid of difficulties from the 
point of view of logic. It was again only recently realized by some authors 
(Bell, 1966; Bohm and Bub, 1966; Ballentine, 1970; de Broglie et al., 1976) 
- - t h a t  mathematical and physical rigor are not the same thing and that 
one has to be careful in evaluating the formal approaches to quantum 
mechanics. This applies not only to the impossibility proofs but to von 
Neumann's  theory of quantum measurements as well (Ballentine, 1970; de 
Broglie et al., 1976) the "telepathic" character of which (as de Broglie et al. 
put it) is no longer acceptable for a contemporary physicist. (As we shall 
see in T21 a great deal of inconvenience was caused by von Neumann's  
approach to quantum statistical mechanics as well.) 

The present work is not intended to be a review article on the 
problems mentioned above and we shall not discuss them in detail. A 
detailed discussion of the impossibility of an efficient impossibility proof 
will be given in our work T6. Extensive considerations of the subject from 
a point of view somewhat different from the one accepted in T6 can be 
found in the cited works. [The essence and some difficulties of the 
orthodox theory of measurements are discussed by Wigner (1963).] The 

1We have cited works denoted by T2, T3 ..... T7 in this paper. The works T2 ..... T5 are, 
correspondingly, Part II ..... Part V of the present article entitled "Nonstationary Quantum 
Mechanics." The works T6 and T7 will be submitted for publication. 
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brief survey of the said problems was necessary owing to the fact that we 
shall encounter them below in a different line of reasoning. More exactly, 
we shall see that quantum mechanics is not free of difficulties of logic, 
which can possibly lead to numerically wrong results in the case of 
perturbations swiftly varying with time. One of our thought experiments is 
of the EPR type and its discussion will lead to the necessity of a picture in 
which some wave packets automatically reduce to states of definite 
stationary energy, but it is considered from a different standpoint (EPR 
did not mean a thing like that, as Furry (1936) suspected), which does not 
refer to the problem of completeness of quantum theory directly. We shall 
be forced, besides, to take a reasonable (as we hope) attitude about the 
nature of the correlations in the quantum motion of systems which are 
spatially separated (isolated) after they have interacted in the past. The 
possible necessity of an HV theory will be examined likewise. The corre- 
sponding considerations will be carried out in a scope sufficient for the 
aims of the present work. 

In T2 we shall apply the ideology developed in the present Part I to 
the problem of entropy increase with time. In T3 we shall show that in the 
case of swift variation of potentials with time one does not come to 
classical momentum distributions (in the classical limit of highly excited 
states) exactly in those ranges of momentum values where coincidence of 
the two theories is expected. In T4 and T5 we shall examine the case of 
slow (adiabatical) variation of potentials with time and shall show that the 
Schr6dinger equation (SE) does not agree with an adiabatical principle in 
thermodynamics in the case when the energy spectrum of the (sub)system 
of interest is discrete T4, while in T5 we shall examine the case of a system 
with a continuous degenerated energy spectrum, pointing out the similari- 
ties and the essential differences between the said two cases. 

2. A DIFFICULTY OF QUANTUM THEORY IN THE CASE 
OF PERTURBATIONS SWIFTLY VARYING WITH TIME 

In the different impossibility proofs (or, more exactly, assertions--T6) 
the authors concentrate their attention on the rules of constructing and 
calculation with the quantum mechanical operators (cf. the reviews of Bell, 
1966, and Ballentine, 1970). But these rules do not constitute a complete 
system of axioms of quantum mechanics. A most important postulate of 
this theory is the evolution equation for the wave function, i.e., the 
Schr6dinger equation. (We are interested only in nonrelativistic quantum 
mechanics in all parts T1-T5 of our article.) The application of the SE to 
the description of the evolution of a quantum system in well-defined 
external fields has two aspects: 
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(1) The evolution of our system with time is given by the equation 

a+(x, t) = E 1-1 x + Vx + U(x, t) ] q (x, t) ih 3t (2.1) 

where x denotes the set of all degrees of freedom of the system, Hkx is the 
operator of its kinetic energy, V x the operator of the interaction between 
its constituents, and U(x,t) the operator of its potential energy in the 
external field which may be time dependent. 

(2) The evolution of the total system consisting of the system x and 
the field sources y is given by a wave function ~(x,y,t),  satisfying the 
equation 

O~(x,y, t) 
ih = (Hk~y + Vxy)tp(x,y, t) 

Ot 
(2.2) 

where xy denotes all the degrees of freedom of the overall (isolated) 
system. 

But it is well known that when the evolution of the overall system is 
described by a wave function q~(x,y, t) one has to employ a density matrix 
p(x,x', t) to the description of the evolution of a part  x of it and not a wave 
function ~p(x, t), generally. Thus we have a point here in which the said two 
aspects of the SE overlap. This point can turn out to be a source of 
difficulties. The aim of our discussion is to show that this is really so. We 
shall consider in detail a specific example since, as we hope, max imum 
clarity can be achieved in this way. Our only assumption will be conserva- 
tion of energy in the overall system xy. 

Our first Gedankenexperiment will be of the EPR type with respect to 
the possibility of making definite conclusions about  a part  of a system by 
carrying out measurements on the other part, spatially separated from the 
former one after interacting with it in the past. But we shall examine this 
situation from a different point of view, thus showing that EPR could 
really find a paradox in quantum mechanics if they were seeking one. 

Quantum mechanics, presumably, is a theory applicable to all possible 
kinds of interactions in nature (electromagnetic, nuclear, etc.), so we shall 
examine a case where two types of interactions are present. But it will be 
clear that the difficulty which arises in this case is not due to the presence 
of forces of a different nature since the reader will be able to construct for 
himself situations where only one type of interaction exists [e.g., electro- 
magnetic interaction in the case of a neutral a tom in a state of definite 
energy, entering or going out of an (ideal) capacitor]. 

We assume that we have an ionized atom of the following kind. A 
very heavy particle I of a mass m~---~oo and positive electric charge e forms 
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a nucleus with another particle 2 and positive charge e owing to interaction 
with an intense attractive short-range force f~2 of a nonelectromagnetic 
character. An electron 3 of a negative charge - e  is in a state of definite 
energy E 3 in the field of the nucleus, the average radius ( r3)  of its "orbit"  
being much larger than (r2)  owing to the assumed properties of fl2 [the 
zero of the coordinate system is in the point where I is located (ml---~oo)]. 
Let the nucleus be in a state of definite energy E12. The atom is 
bombarded with electrically neutral particles 4 having a velocity much 
larger than the average velocity of rotation of 3 about the nucleus and 
interacting strongly with 2 (f34 = 0, f24~=0)" We are interested in that part 
of the collisions between 4 and 2 in which 2 leaves the atom "instanta- 
neously," i.e., with a velocity much larger than (v3) (the fact that such a 
collision has taken place can be registered in principle by an "electromag- 
netic" instrument measuring the sudden change of the field of the nucleus; 
this instrument can be located far from the nucleus. Scattering theory, 
naturally, has to ensure conservation of energy in the overall system 
( E  i = E = E12 + E 3 + E 4 --- Ey) in the cases of interest. 

In the said cases we have a well-defined potential U(r3,t ) for all 
moments of time so that, according to the prescriptions of quantum 
mechanics, we can use the postulate expressed by equation (2.1) for the 
description of the evolution of the state of the electron 3, i.e., to find 
the wave function +(r 3, t) for moments t > 0, t = 0 being the moment of the 
collision and +(r 3, t)t= 0 being known. In other words, this postulate says in 
fact that the above-mentioned device is the only apparatus necessary to 
conclude that we have a wave function qJ(r 3, t ) />0 of the form 

~b(r3, t)t > o = ~ ,  a,, exp ( -  iE3n'[h)l~n (r3) (2.3) 
n 

where ~p~(r3) are the eigenfunctions of 3 in the new field (t > 0) correspond- 
ing to energies E3n, n denoting the corresponding complete set of quantum 
numbers of 3. The constant coefficients a n are determined in a well-known 
way: 

a n = f ~(r3, 0)~b' n* (r3)d3r3 (2.4) 

The s ta te  ~b(r3,t)t>0 , clearly, is a state of indefinite energy, [an[ 2 giving 
the probabilities for the corresponding eigenstates according to current 
axiomatics. 

On the other hand, another observer can measure the kinetic energies 
El, 2 and E~4 of 2 and 4 after the collision (this observer can have the 
information about the moment  of the collision by using the same electro- 
magnetic device). This can be done, for instance, using their ability for 
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nonelectromagnetic interactions. According to the postulate (2.1) this pro- 
cess has no significance at all for the evolution of the state of motion of 3 
since the only factor determining this evolution [according to (2.1)] is 
U(r3, t) and the initial conditions for ~b(rat ) (certainly, the measurement of 
Eg2 and Ek4 is carried out in a remote district where the electromagnetic 
field of 2 cannot influence U noticeably). But the second observer, who is 
supposed to know the exact value Eg = E of the total initial energy, will 
obtain definite values of Ek2 and Ek4 in the process of measurement 
irrespective of whether the two particles leave the atom in states of 
well-defined individual energies or not, and the only possible conclusion 
for him will be that the atom is in a state of definite energy E3, = E -  Ek2-- 
Ek4 after the collision owing to the necessity of energy conservation. (The 
measured sum Ek2 + Ek4 certainly cannot be arbitrary; it has to be such 
that its combination with one of the eigenvalues E3, gives exactly E = E i = 

We have, evidently, a contradictory situation here-- the  state of the 
system must be defined objectively and should be the same for all 
observers, while in our case the first observer who relies on the axiom (2.1) 
obtains a wave function, (2.3), and the second observer who employs (2.2) 
comes to a fixed ~p" after measurement over the initial incoherent mixture 
of states (tp~) of the electron. 

This fact has experimental implications. In a nonstationary variant of 
description of the collision process which is always possible, at least in 
principle (let us remind the reader that such a variant exactly is employed 
in quantum field theory; cf. any book on the subject), observer 2 will 
obtain, eventually, an overall wave function corresponding to a definite 
energy E. The part of the said wave function which is of interest to us from 
point of view of a comparison with the inferences of observer I in the cases 
of potential jumps can be written schematically in the form 

~p(r 2, r3, r 4, t) = ~, c,:pn,(rz, r4)~;,(r3)e -,et/h (2.5) 
n,i 

where ~p,i(r 2, r4) are eigenfunctions of Hk2 + Hk4 satisfying the requirement 
Ekz, k4, n + E3,= E (the index i takes account of the degeneration of the 
energy spectrum of particles 2 and 4) and c,,. are constant coefficients. The 
registering of the potential jump by observer 2 makes it possible for him to 
evaluate the time interval since the moment of the reaction after the 
elapsing of which he would have to say that the state of 3 is a given 
specific ~p,~ which participates in the total wave function, (2.5). The said 
interval is determined with the help of the uncertainty relation AEAt .~h 
(see, e.g., Section 112 of Blokhintsev's book (1963) and the discussion in 
T5). So, the probability of finding 3 in a definite point r 3 after such an 
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interval of time, according to observer 2, is practically constant with time 
and is given by the incoherent sum 

f I  (r2, r3, r4, t)IZd3r2d3r4 = lb. 121 VL (r )12 (2.6) 

where [b,12=Y.ilc, i[ 2. On the other hand, observer 1 will declare that the 
coordinate probability density is essentially time dependent and is given by 
the coherent sum 

I (r3,t)l == a*a~p~(r3)~P~,(r3)exp[i(E3n-E3,.)t/h] (2.7) 
m , n  

[See equation (2.3); the fact that ~(r 3, 0) is a well-defined quantity in our 
overall system is demonstrated in Appendix A.] 

Consequently, we came to a situation in contradiction to the point of 
view of the interpretation of the square of the moduli of the wave 
functions. But the disagreement may go still deeper: according to observer 
1 the probability of finding 3 in a state ff,] is equal to [a,[ 2, while according 
to observer 2 this probability is equal to Ib.I 2. And one cannot expect a 
priori that la.I = Ib.I (certainly, the normalization of (2.5) is chosen so that 
X.lb.12--X.laol2= 1 for the sake of comparison). 

Indeed, one comes to the sets of values of la l and Ib l in essentially 
different ways. The values of I are obtained by considering a specific 
experimentally possible situation and taking into consideration the type of 
the interactions and the existing conservation laws. The constants a n are 
obtained (in our case) using only the fact of the quasi-instantaneous 
character of inclusion of the perturbation. The two ways of reasoning thus 
differ radically and one is justified to expect, generally, disagreement, the 
acceptable axiom being (2.2). 

For "continuity" considerations it is clear that the possible disagree- 
ment between (2.1) and (2.2) has to exist not for quasi-instantaneous 
perturbations only. It is impossible to say at present where exactly the limit 
lies beyond which (2.1) is no longer an acceptable axiom. It is evident, 
though, that this limit exists. Indeed, the postulate (2.1) is well confirmed 
by the experiment in the other limiting case [U(x,t)= U(x), -oo  <t < oo]. 
The same considerations show that (2.1) is acceptable for slowly varying 
perturbations (with respect to the characteristic times of the specific 
problem). A detailed consideration of such processes is given in T4 and T5. 

Obviously, it would be very important to verify experimentally that 
(2.1) and (2.2) disagree. It is as obvious that one has to turn to experiments 
in which quasi-instantaneous jumps of the potentials actually exist. Jumps 
of this sort usually take place in the cases of fl decay of nuclei since the fl 
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particles are much faster than the atomic electrons in the majority of 
events. The only (inessential) complication in this case is the necessity to 
take into consideration the recoil of the atom (molecule). In the article by 
Wolniewicz (1965) is discussed exactly a case of this sort. He has computed 
carefully, using (2.1), the disintegration rates of the Hel l  + molecules which 
are formed after the fl decay of HT. His result-at least 17.8%-is in gross 
disagreement with experiment (6.8_+ 1.9%). 

The above striking disagreement between theory and experiment is in 
accord with the gap between the logic of (2.1) and (2.2) in the case of 
interest. And this is not an isolated phenomenon which can be attributed 
to some error of a trivial character, The discussion of Feinberg (1965) is 
evidence of that. This author considers the experimental results of Suzor 
(1960) and Spighel and Suzor (1962) for ionization probabilities after a fl 
decay of some nuclei. One encounters here again marked disagreement 
between experiment and the theoretical framework established by (2.1). 
Feinberg comes to some quali tat ive improvements of the initial theory by 
taking into consideration the ionization probabilities due to the possibility 
of direct collisions between the atomic electrons and the fast fl particles 
which leave the nucleus. But this does not remove the problems. 

Denote with E 1 = m c E q  - E B the energy of the fl particle and with 
E 2 =  mc2d - ~ the energy of the electron which leaves the atom in the 
process of ionization. Then, as Feinberg points out, we have the following. 

(i) In the case of p32 the theoretical probability of ionization value W 
is 2-3 times larger than the experimental one in the region 1.2 k e V < e <  
2.5 keV, the theoretical curve, though, having a correct form. But in the 
region 6 keV<e < 12 keV even this quality of the curve disappears and the 
decrease of Wex p with the increase of Er fo r  E B ~ m c  2 is inexplicable from 
the theoretical point of view. 

(ii) After integrating over the entire spectrum of the fl particles one 
comes to the dependence of the ionization probabilities on e. Some of 
Suzor's results (1960) for N a  22 belong to that range of ~ values (e>>I k, I t 
being the ionization energy of the K shell) in which theory is expected to 
give exact quantitative results. But here exactly theory departs most 
radically from experiment: the theoretically predicted decrease of W with c 
is given by an e-2 law, while the experimentally observed law is c -  n which 
leads to disagreement between theory and experiment amounting to an 
order of magnitude for large e. 

These results are quite significant. Further experimental and theoreti- 
cal work in the field of fastly varying potentials is necessary so that a 
complete picture of the exact status may be drawn. As for us, we shall 
continue in this paper and those to follow the discussion of the logical 
foundations of the nonstationary problem. 
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3. REINTERPRETATION OF THE WAVE FUNCTION OF A 
SYSTEM CONSISTING OF SPATIALLY SEPARATED 

SUBSYSTEMS 

The above discussion of the incompatibility of the postulates (2.1) and 
(2.2) in the general case comes in conflict with some current interpretations 
of wave functions of the type given by equation (2.5). The present section 
is dedicated to the clarification of the problem about the actual informa- 
tion given by such wave functions. 

Wave functions of the type (2.5) show that the different parts of a 
quantum system are described by a density matrix. In our specific 
Gedankenexperiment this means that the subsystem formed by the electron 
3 in the field of the nucleus has undergone a transition from an initial state 
of definite energy E3, described by a wave function ~b,.(r3), to a final state, 
described by a density matrix p(r 3, r~) (from the point of view of observer 
2). We shall give here an interpretation of this process by clarifying the 
physical meaning of the correlations in the motion of subsystems, ex- 
pressed by wave functions of the type (2.5). In order to evade inessential 
complications we are going to examine first the case of an overall system, 
consisting of two subsystems with degrees of freedom correspondingly x, y,  
the eigenstates ~i(x), cpk(y ) of which (after the separation) are supposed to 
be nondegenerate and orthonormal  [ft~(x)@i2(x)dx--6iti2 , and so on]. 
Conservation of energy is assumed in the process of separation. 

The total wave function 

eO(x,y) = ~,  aAbi (x)~Cy ), Eix + Ek, y = E (3.1) 
i 

reduces to an incoherent mixture of states ~i(x) with corresponding proba- 
bilities [ai[ 2 for an observer connected with subsystem x (and, correspond- 
ingly, for an observer connected with y). This is true, evidently, for all 
possible measurements carried out over x (or y) since, for instance, 

(Ox>= f ep*(x,y)Ox~(x,y)dxdy= ~E la,12 f q~*(X)Oxq~,(x)dx (3.2) 
i 

where 0x is the operator of an arbitrary physical quantity of subsystem x. 
Consequently, the correlations of the motion of x and y, do not exist for 
observer x. These correlations do not have any influence on the motion of 
x (or y)  which is expressed by the fact that the said measurements yield 
results which would be the same if the universe consisted only of noninter- 
acting copies of subsystem x (or y) with relative frequencies given by [ai[ 2. 
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On the other hand, a simultaneous measurement of the coordinates of 
subsystems x and y will give a result corresponding to a density of 
probability [~(x,y)[ 2 and not to the simpler expression Elail2l~il2[cp~l ,2 and 
it seems that we do not have the right to say that subsystem x is really in a 
state of motion +i(x) and y in a state Cpk,(y ) (with a probability equal to 
lail2). Facts of this sort have generated the idea of a specific interaction at 
arbitrary distances due to the existence of a "quantum potential" Q which 
has a definite (though different) value for any possible state ~x,y) (see, 
e.g., the work of Bohm and Hiley, 1975). Thus a specific quantum picture 
of an intense interaction between remote parts of a system is assumed. 

But, as we saw, observed connected with the disjoint subsystems will 
not detect any strange influence on the results of their measurements and 
one naturally poses the following question: Is the correlation of the motion 
of separated subsystems, given by equation (3.1), an expression of an 
infinite range "quantum interaction" or is it an expression of some simple 
fact? Let us examine an analogical situation in classical mechanics prior to 
the detailed discussion of this problem. 

Assume that two classical pendulums interact when they are close to 
each other and do not interact at all after a separation at a larger distance. 
After the separation every one of the pendulums oscillates freely, but 
owing to their interaction in the past a specific correlation of their motion 
exists which will be particularly simple if the pendulums have equal 
parameters. These correlations are determined by the forces with which the 
pendulums interact and the way they are separated (and, certainly, the 
initial conditions of the problem). But the said correlation does not mean 
that the pendulums influence each other in a magic fashion after their 
separation. It is only an expression of some property of the simultaneous 
motion of the two pendulums while any one of them behaves as if it were 
the only system in the universe (together with a fixed gravitation field). 

The wave functions of-the type (3.1) have caused a lot of trouble in 
the past from the point of view of interpretation (especially in the quantum 
theory of measurement). The above simple example indicates an as simple 
and natural interpretation: These wave functions describe situations in 
which the systems x and y are actually in states ~ (x )  and ~ ( y )  (with a 
probability equal to la;12). Owing to the fact, however, that these states are 
not prepared independently but  appear owing to an interaction of the 
systems x and y in the past, one must use the overall wave function ~x,y) 
for additional information about  the correlations in the motion of x and y 
when this is of interest. An observer of the overall quantum system x, y 
(analogically to an observer who is interested in the correlations of the 
motion of some classical systems) thus has the same right to say together 
with the observers of x and y only that the overall system is really in some 
state ~k~(x)cp~(y) which is encountered with a probability equal to la, I 2 in a 
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given ensemble of similarly prepared states. But this observer must not use 
the usual density matrix calculus for independent events when he is 
interested in quantities which depend on both x and y after he knows that 
the two systems have not been independent in the past. The states in which 
the subsystems actually are can be determined by observer 2 through some 
act of measurement in which he will not exert any influence on the said 
states but will only destroy some correlations in the motion of x and y.  
Thus the only consequence of measurement is that after it not only the 
subsystems but the overall system too are described by density matrices. 

As was mentioned above the complications in the presence of degen- 
erated spectra are inessential, so that they do not need special considera- 
tion. 

We must remind the reader that the absence of any influence of a 
remote system on a system of interest is reasonably postulated by conven- 
tional quantum mechanics itself (unfortunately this does not seem 
sufficient for the obtaining of correct numerical results in all cases). 
Indeed, a remote system will give U = 0  in the place where the system 
investigated is located and from equation (2.1) it is evident that in such a 
case the latter system is " f r e e " - - n o  influence of any kind exists and 
correlations of motion with other systems play no role in the evolution of 
the system of interest. We shall not have, certainly, a sensible physical 
theory if the evolution of a given microsystem depends not only on what 
takes place inside it but on the behavior, e.g., of some proton in a 
neighboring town. 

Returning to our Gedankenexperiment we see that the measurement 
process, effected by observer 2, does not affect the state of motion of the 
electron 3 in any way. But this simply means that measurement will give 
observer 2 information about a process which has taken place "automati- 
cally," namely, an irreversible evolution from the initial wave function 
~i(r3,t ) given by equation (2.3) to some eigenfunction ~y of the new 
Hamiltonian of electron 3. Measurement thus tums out to play quite a 
minor role in processes of this type: it just gives information about a fact 
that has taken place already since nothing is created by measurement 
except the destruction of some (most often unimportant) correlations, as 
was mentioned above. Quantum mechanics is thus a quite specific theory. 
It gives information about all the possible processes and correlations in the 
system but the price for this is the inability of the theory to describe the 
concrete relaxation processes in the subsystems which objectively take 
place (prior to any measurement). And if something takes place objec- 
tively, then a theory able to describe it must certainly exist. 

In simpler thought situations of the type proposed first by EPR (cf. 
also the much exploited Gedankenexperiment of Bohm, 1952), one has the 
same reasons to declare that correlations between separated subsystems do 
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not mean influence. Our discussion of equation (3.2) is applicable in fact 
(with corresponding modifications) to any case of separated subsystems in 
which some conservation law for the total system exists. (Bohm's discus- 
sion 1952, end of p o i n t  17, e.g., of this problem in his specific 
Gedankenexperiment is in fact a private case of ours as far as independence 
of the conduct of the two systems is concerned; his present-day standpoint 
on the subject seems to be quite different, though--see  Bohm and Hiley, 
1975.) In any specific case the role of the said correlations in the motion of 
separated parts may become important only if they come close together 
again (without any spurious influence on these correlations by measure- 
ment ) - - the  overall system thus formed will have then the same value of 
the quantity which is constant in the process. In Bohm's example, e.g., we 
shall have once again a spin-0 molecule. But in the classical case correla- 
tions play an exactly analogical ro le- - i f  several separated subsystems 
come close together again, then the correlations in their initially "free" 
motion will play an important role in the subsequent evolution of the total 
system (they will determine, e.g., the initial conditions in the moment in 
which interaction is restored). And we have to stress here that one should 
distinguish between correlations in the case of motion of subsystems of a 
larger system and the specific quantum interference effects in the case of a 
single particle (leading, for instance, to some diffraction pattern after the 
passing of a particle flow through a crystal lattice). Indeed, there exist 
"interference terms" in Ir 2 t o o  but the two things are nevertheless 
quite different. Lack of clarity in the understanding of this point exactly 
has led to the establishing of the following conventional standpoint on 
quantum measurement theory which is postulated to have a general 
validity: 

Any state of a given subsystem is created by the act of measure- 
ment (even when it is carried out on a far-off cite). One must 
not speak about an actual existence of a fixed state of a part of 
a larger system prior to measurement since then specific quan- 
tum correlation effects will be absent. 

But we saw already that this is not the only possible standpoint, and 
that this is not a reasonable standpoint. The numerous fruitless debates on 
the role of measurements in the past and the existing paradoxes of the 
Schrrdinger cat type (the cat is neither alive nor dead before the observer 
kills it or lets it live with his glance) are an evidence of the futility of such a 
generalized point of view. The point of view of our observer 2 removes the 
difficulties: after the separation the subsystems of the larger system come 
"by themselves" to states of definite energies. The experimental verifica- 
tion of this fact will remove some correlations in their motion but this does 
not mean that measurement has created the states of the subsystems. What 
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this does mean is, e.g., that Schr6dinger's cat will be actually either alive or 
dead when the observer looks at it to simply verify this fact since super- 
position of states of different energies of a given system (the cat) are 
forbidden (of. also our subsequent discussion). 

The results of the discussion in the present section are important and 
it is worthwhile to summarize them. We saw that (2.2) is an acceptable 
axiom in quantum mechanics [unlike (2.1)] but the wave functions of the 
type (2.5) to which it leads need a reinterpretation. They do not give 
evidence about any specific nonseparability of subsystems. The behavior 
of a subsystem is completely free of any influence from the remaining 
subsystems after their separation but it is not independent of their be- 
havior prior to the spurious influence of, e.g., a measurement procedure, 
owing to the fact that the subsystems have interacted in the past. There is 
nothing specifically quantal in the latter fact except the statistical character 
of the correlations in the motion of the subsystems. In classical mechanics 
we have a completely analogous situation with the exception that when we 
examine the overall system the corresponding correlations in the motion of 
subsystems have a deterministic character (in our specific example we can 
say, for instance, that "the two pendulums oscillate synchronously"). The 
lack of clarity in understanding that no influence and independence of the 
motion of subsystems are two different things (see, e.g., Furry's article, 
1936, as an example) lead to assertions of the following type: 

If the separated subsystems are really in definite states de- 
termined by their own parameters then one must employ a 
density matrix and not a WF [wave function] in calculations 
referring to the overall system. This, however, may lead (and 
actually leads) to disagreement with experiment, so that the 
above opinion is erroneous. 

What  we saw is that one can very well say that both prior to and after 
a measurement the subsystems are actually in definite states of their own. 
The only difference between the two cases is that prior to a measurement 
the overall system is described by a wave function while after a measure- 
ment by a density matrix. Or, to put it briefly, lack of influence is sufficient 
to say that separated subsystems have to be in individual states of their 
own but independence of the motion of subsystems (leading to an overall 
density matrix) can be achieved only after interaction with a body extra- 
neous to the overall system of interest. This way of reasoning, being a 
direct consequence of quantum mechanics itself when it is adequately 
interpreted, is by no means paradoxical. At the same time it removes old 
prejudice, leading, for instance, to the explicit or inexplicit conception that 
if one uses HVs for the physical description of an overall system, then he 
must use the calculus for independent events as regards its different 
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subsystems (cf., e.g., Bell's, 1964, argument). Our argument, which says 
that there exist no specific nonlocality effects for spatially separated 
subsystems and that lack of influence and independence of their motion 
are quite different things at the same time, refutes the idea about the 
necessity of a classical probabilistic calculus in HV theories. 

4. NECESSITY OF TIME-IRREVERSIBLE EVOLUTION 
EQUATIONS FOR SUBSYSTEMS OF A LARGER SYSTEM 

Any possible experimentalist in this world is in the position of an 
observer of a subsystem of a larger system, the latter system being the 
universe. It is natural to assume that the universe is in a state of definite 
energy since otherwise it would not be possible to give a clear explanation 
of the energy conservation law. If this is really so, then any system will 
undergo a transition to a state of definite energy in the process of its 
separation from the remaining part of the universe. But the above "univer- 
sal" assumption is not, strictly speaking, necessary since, as it is postulated 
in quantum theory (and confirmed by experiment for some simplest cases) 
any isolated system can be in a state of a definite stationary energy, and in 
such a case if it splits into several noninteracting parts, then any part will 
pass into some state of a definite energy (the overall system then plays the 
role of a "universe"). The observer with his apparatus and the system of 
interest form, in principle, a "universe" which can be in a state of definite 
energy. If the system were in a state of definite energy prior to its 
separation from the rest of the "universe" and well-defined potentials 
existed during the process of its separation, then the problem for the 
description of the process of a transition from the (formerly) stationary 
state ~,. to a stationary state ~by appears for an observer of the system in 
accord with the above reasoning of observer 2. 

The first thing to do for this purpose is to choose the language in 
which such transitions can be described. In the case of well-defined 
potentials one could use the basic idea of quantum mechanics of describ- 
ing the states of motion with the help of a wave function ~ of some sort 
(this concept has proved to be of a great importance and usefulness for 
nonclassical phenomena). Then a second problem arises, namely, what is 
(are) the equation(s) which has (have) to be satisfied by this wave function. 
Here exactly lies the main difficulty. The discussion of our thought 
experiment shows that, generally, this will not be the SE (2.1). Then we saw 
that the transitions to ~by are "automatic" and have all the characteristic 
features of an irreversible process (tpf is stable and no longer varies with 
time). The only difference from usual statistical mechanics is that there are 
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several or even infinitely many "directions" (possibilities) of an irreversible 
relaxation of the initial wave function in our case. Once the direction is 
chosen, a definite final result ~f will inevitably follow. But how can one 
choose the direction? 

There seem to exist two possible answers. One of them is the follow- 
ing: Owing to the fact that the initial wave function ffi is fixed, a set of 
possible evolution equations exists, leading to different final states fly. The 
particle makes a random choice of the equation for each concrete transi- 
tion i - f  with a probability P/y. 

The second possible answer is that the equation of motion is only one, 
the different final results being determined by additional HVs which have 
to be known together with ~ki. (Certainly, things may turn out to be 
essentially more complex since the HVs may be the fundamental quanti- 
ties, and the wave function a "macroscopic" property explained by them, 
e.g., of the type of pressure in thermodynamics.) From the point of view of 
the transition to the adiabatic results of quantum mechanics which are 
described by a single equation, the SE, this possibility seems preferable to 
us. From the above discussion it follows that irreversibility will be a 
characteristic feature of such a "master equation." Thus we come with help 
of an independent argumentation to an idea proposed by Bohm and Bub 
(1966). Our way of reasoning shows a way for finding experimental 
evidence in favor of the concept that present-day theory is not the last 
word with respect to the conceptual foundations of quantum mechanics. 
Another way of searching experimental evidence for this is surveyed, e.g., 
in the work of Freedman and Holt (1975). We must point out, however, 
that the latter way (photon correlation experiments) seems somewhat 
dubious from the point of view of our discussion of the physical meaning 
of correlations in Section 3. The essential difference in our case is that 
evidence should be sought in cases of fastly varying (with time) external 
potentials. 

It is easily explicable, in principle, why possible HVs will play a 
noticeable role in the case of swiftly varying perturbations, while in the 
other limiting case their existence may not be taken into account for 
reasonable time intervals (for very large time intervals this will not be 
generally true; cf. T4 and T5). In the case of slow perturbations the HVs 
may be supposed to have an almost equilibrium distribution which makes 
the applicability of the SE possible. In the opposite case some non- 
equilibrium property, for instance, the momentary location of the particles, 
can play a decisive role in the future evolution of the system. The specific 
example considered in detail in Appendix B shows that location in regions, 
not coinciding with the entire region of interest, may become an important 
parameter in a future theory. 
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The HVs can turn out to be unobservable in principle. Still, the search 
for them will not be unreasonable. This opinion is supported in the 
discussion in T7. 

We know practically nothing about the exact form of the hypothetical 
time-irreversible evolution equation at present. But the application of the 
SE to the overall system containing the system of interest gives some 
information about the relaxation properties of the subsystem. Indeed, the 
interaction of the parts of an overall system is time independent and, 
consequently, the SE is valid. When, however, the parts of the system move 
in such a way that up to a certain moment t o the interaction between them 
can be considered to be practically absent and in t o instantaneously 
included, one may hope that the application of the theory of perturbations 
to the overall system can give correct qualitative results about the picture 
of the time evolution of the said system. This is sufficient for our consider- 
ation here, so that one can turn to the discussion in Sections 84 and 112 of 
Blokhintsev's book (1963). It is shown there that the coefficients with 
which the wave functions corresponding to energy E participate in the 
wave packet differ essentially from zero for times t<~h/lE-Ei] only, E i 
being the initial energy. For larger t these coefficients practically disap- 
pear. If we examine a part of the system which has to "relax" to a state 
q~n(x) corresponding to an eigenenergy E n when t--->oo, then owing to the 
completeness of the set of eigenfunctions of the Hamiltonian H(x) the 
wave function ~(x, t) of subsystem x will be a superposition of the type 

Y, (4.1) 
k 

in the process of transition. Having in mind the above inequality, the 
moduli of the coefficients ak(t ) may be expected to be ~ e x p [ - I E  k 

- Enlt/h ] ,kr  since in this case the said inequality will be satisfied. Such 
ak(t ) would yield an irreversible behavior in time. Certainly, this is not the 
only form of ak(t ) satisfying AEAt~h.  But the very fact that time irrevers- 
ibility is intimately related to the well-known t ime-energy "uncertainty 
relation" is interesting by itself. 

In the above discussion the energy of the other parts of the overall 
system is considered to be well defined for the sake of simplicity. 

Having in mind everything said up to here one may expect that 
quantum systems obey a master equation of the type 

ih~t  = H~ + F~b (4.2) 

where the operator ~' becomes significant in the presence of swiftly varying 
perturbations and contains the possible HVs. Equation (2.2) will reduce to 
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the usual SE when the last term on its right-hand side is negligible. This 
equation must be such that an irreversible transition to a state of definite 
energy be guaranteed in all cases. Detailed considerations of the adiabatic 
properties of the SE will be given in T4 and T5. It will be shown there that 
the said term is negligible in all the approximations of perturbation theory 
only for nonstationary potentials of the type V(x, t)= V(x)e ~t, a--> +0. 

In the present paper we have restricted ourselves to the law of energy 
conservation only because of its exceptional importance in quantum 
physics-- the  overall SE is formulated in terms of the energy operator H. A 
profound study of the role of the other basic physical quantities may 
probably lead to the elimination of other paradoxes such as the nonex- 
istence of linear combinations of states of the same eigenenergy but 
different angular momentum in the case of macroscopic bodies. 

The argumentation in the present work can well explain an experi- 
mental fact. A person interested in the energy state of an atom after the 
application of some perturbation need not do any measurements despite 
the prescription that he has to. He has only to wait and see whether the 
atom will emit a photon in the process of a transition En-->E m (En >Era) or 
not. The well-defined energy of the photon shows that the atom itself has 
been in a state of well-defined energy E~ prior to the transition to E m. It is 
not necessary thus to try to reduce the initial wave packet of the a to m - - i t  
will "automatically" reduce itself even if the atom is isolated after the 
perturbation. A possible proportionality of [ak[ to exp[ - [E~, - E.[ t lh ] gives 
a good explanation of the fact that the atom quickly reaches a state of 
energy E n in the process of self-reduction of q~, after which a decay owing 
to the small natural width of energy levels takes place (we are not 
interested here in the nature of this width). 

5. CONCLUSION 

Many physicists have come through different ways of reasoning to the 
thought that preferable variants of the theory exist in which specific 
difficulties could be absent. A simple objection to all of them was the 
argument that present-day theory gives correct expressions for the corre- 
sponding probabilities and, since nothing more can be obtained experi- 
mentally, this is all that we need irrespective of whether one likes the 
contemporary form of the theory or not. 

The discussion in this work aimed for the construction of 
Gedankenexperimente of a different sort than the ones which have exten- 
sively been discussed in the literature, and for the demonstration through 
postulate (2.1) that the above objection is moot. Swiftly varying potentials 
with time offer a new line of seeking experimental evidence in favor of the 
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thought that modifications of the theory are necessary. The above discus- 
sion of the existing marked disagreement between conventional theory and 
experiment (Section 2) shows that this line can turn out to be very fruitful. 
It is most important, obviously, to start with experimental and not only 
logical argumentation in a difficult field of science and the author hopes 
that the possibilities which have opened up will not be neglected. 

APPENDIX A 

The fact that ~(r 3, 0) is well defined in our Gedankenexperiment at t = 0 
in spite of the existence of an overall wave function for the system of 
which 3 is a part is fairly obvious by itself. Still, it is worthwhile to show 
explicitly why this will be really so for systems which consist of a small 
nucleus and an "electron cloud" about it of a "radius" much larger than 
that of the nucleus. Taking as an example our specific system and denoting 
the coordinates of particles 1 and 2 by x we can write the overall 
Hamiltonian H in the form 

H ~- Hx "~- Hk3 "t- Vx3 ( A . l )  

where Hx is the energy operator of the nuclear particles 1 and 2, including 
their electromagnetic interaction with each other, Hk3 the operator of the 
kinetic energy of 3 and Vx3 the operator of the electromagnetic interaction 
of particle 3 with particles 1 and 2. Vx3 can be represented in the form 

Vx3 = V' - 2e2/ r3 (A.2) 

where r 3 = Ir3]. V' is essentially not equal to 0 only inside the nucleus, the 
"radius" (r2) of which is very small compared to (r3) owing to the 
assumed properties of fl2. The eigenfunctions fro of the operator H x + Hk3 
--2e2/r3 corresponding to energy E 0 can, obviously, be represented as 

 o(X, r3) =  p(x) q(r3) (A3) 

where %(x) is an eigenfunction of n x and ~bq(r3) is an eigenfunction of 
2 p Hka--2e / r  3. The operator V will introduce only a small variation of the 

values of E 0 and ~ko owing to the small dimensions of the nucleus. Indeed, 
using the theory of stationary perturbations we obtain the following 
expression for the first-order correction E~ to Eo: 

E~ = (rpp~q] V'l%~bq) --- (r Wq(x)[cpp) (A.4) 
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where Wq(x)= (q.'q] V'l~q) is small compared to unity owing to the above- 
mentioned fact. When f12 is sufficiently large (A.4) will immediately give 
IE~I<<IE01. The same applies to the variation ~;) of tp0-I~01'<<1%1. Thus the 
wave function of the stationary state of 1, 2, and 3 can be written in the 
form 

+(x, = (x) [  q(r3) + ] (A.5) 

where [~x,r3)l<<[~pq(r3) [ for every x. One can say, consequently, that we 
have really a well-defined initial wave function ~pq(r3)t= 0 of electron 3. In 
our specific case this is a direct consequence of the small dimensions of the 
nucleus. 

APPENDIX B 

Assume that a particle is moving in an infinitely deep one-dimensional 
potential well of the form U ( x ) = 0  for 0 < x  <a ,  U(x)=  oo for x < 0, x >a .  
The stationary wave functions, satisfying zero boundary conditions 
(the necessity of such conditions in our case is discussed in most 
of the textbooks on quantum mechanics) are of the form ~n(x)= 
(2/a)l/2sin(mrx/a), n =  1, 2 . . . . .  the corresponding eigenenergies being 
E n = n2~r2h2/2ma2. The particle is assumed to be in its first excited state 
~2(x). Then q,2(a/2) = 0, tP2(a/2 + A) = -- ~P2(a/2 -- A), 0 < A ~< a/2. 

Let us begin now to insert slowly and symmetrically a "wedge" with 
absolutely impenetrable walls in point a/2. The simple mathematical 
expression of this action is a "moving" boundary condition of the form 
~b(x) = 0 for a / 2 -  6(0 <~ x <<. a /2  + d(t), 0 <<. 8(t) < a/2, 8(t) being given, e.g., 
by an expression of the type vt, where v is a small positive constant (we 
suppose that the edge of the wedge touches point x = a/2 in moment t = 0). 
Problems of this sort are well known in mathematical physics. In the 
theory of heat conductivity, for instance, the presence of variable 
boundary conditions is known as the problem of Stefan. 

We shall discuss this problem from the point of view of the SE. The 
initial wave function ~b i = ff2(x) will, obviously, split into two parts corre- 
sponding to the two free regions I and II, separated by a district of length 
28(0, t/> 0, in which ~(x, t )=  0. Because of the symmetry of the problem 
we shall have for any t ~b[a/2-A'( t) , t]=- ~[a/2+A'(t),t], where 8(0 
A'(t)<<.a/2. The evolution of the wave function in any one of the two 
possible districts in this case of an adiabatic variation of a parameter (here 
the length of the district) can be found with the help of a specific variant of 
the theory of time-dependent perturbations (cf., e.g., Davidov, 1973). 
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Namely, the wave function ~b(x, t) is represented as 

(fo ) ~b(x,t)= ~, a,i(t)q)n(x, Rt)exp - i  60n(~-)dT 
n 

(B.1) 

where epn(x,Rt) is the eigenfunction of the Hamiltonian corresponding to 
the value R t of the valuable parameter R in moment t and ~0n(~- ) = %(R~)/h, 
%(R~) being the corresponding eigenvalue of H for a value R~ of the 
parameter. The initial condition is a,i(O ) ---6hi. We shall have then 

am(t)=fot~p('r)exp(-ifo~*Oin(~")d'r')d'r (B.2) 

where (.din ~ -  02 i - -  09 n and 

These formulas give an expected result--in our adiabatic case the 
course of the wave function in I and II will practically coincide with the 
course of the ground state eigenfunction in an infinitely deep potential well 
of length a / 2 - 6 ( 0  for any moment t. 

Let us invert now the process in some moment t > 0, i.e., let us begin 
to take the wedge adiabatically and symmetrically out. Everything said 
above remains, obviously, true again. The edge of the wedge will leave 
point x - - a / 2  in some moment t =  t' and the two parts of g,(x,t) will unite 
once again. Owing to the symmetry of this adiabatic problem q~(x, t ) t ? >  t, 

will practically coincide with ~b,. = ff2(x), the inessential difference consist- 
ing in a phase factor of a modulus equal to unity and some vanishing 
terms giving the transition probabilities to states q,n(x), n ca2. Thus we shall 
find our particle in a state of energy E 2 with a probability practically equal 
to unity. 

But this is a paradoxical result. The particle cannot be split into two 
parts by the wedge. The coherence of the two parts of the wave function in 
the process of inserting and taking out the wedge is devoid of physical 
meaning. Indeed, after the edge of the wedge touches point a/2 the 
particle will be located in one of the possible regions of free motion, and 
after the removal of the wedge the wave function will be a packet of the 
type 

+(x , t ) t>c  = Y~ a,,6,,(x)exp(- iEntlh ) (B.4) 
n 

q~n(x) being defined above and the constants a n being equal to 
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f~(x, t')~*(x)dx, ~p(x, t ' ) :~0 in only one of the intervals 0 < x  < a / 2 ,  a/2 < 
x < a. Many a n thus have to be essentially not equal to 0 according to the 
same SE for a particle localized in one of the said regions. 

One may argue here that only the second way of reasoning is correct, 
so that the former one must be discarded. But the former argument cannot 
be discarded since this is the only solution of our problem offered by the 
SE [the way of reasoning expressed by (B.4) is based on what has to 
happen and not on what the SE really gives]. 

Consequently, what we lack in this case is a more detailed information 
about the location of the particle in moment t = 0. The necessity of such 
information is excluded by the formalism of present-day quantum 
mechanics. So, location can turn out to be an important HV. 

The coefficients a n in (B.4) may not be correct, as our previous 
discussion shows. This possibility is inessential for the discussion of this 
specific Gedankenexperiment: It is clear from any reasonable point of view 
that the coordinate distribution has to be essentially nonstationary for 
t > t ' ,  at least for a certain period of time, owing to the possibility for the 
particle to enter once again the other half of the interval (0, a), while the 
theory with a variable parameter considered above gives an almost 
stationary coordinate distribution for any finite period of time. 

The above problem was formulated in a somewhat unusual language 
(variable zero boundary conditions). Its formulation with the help of a 
finite variable potential gives essentially the same results. Such a formula- 
tion has the additional merit of demonstrating that no spurious phase 
shifts of the wave functions in the regions of free motion spring up in result 
of the sudden appearance or disappearance of a perturbation in point 
x = a/2; in the moments t = 0  and t - - t '  we have exactly such a case. 

Indeed, let us examine the following finite potential model of the 
wedge. The touching of point x = a/2 is modeled now by an instantaneous 
appearing of a perturbation U(x)=  0 for x q~(a/2-do, a~2 + 80), where ~0 
is a constant, 80~0, and U(x)=  U0=~0-25 for xE(a/2-8o,  a/2+6o), 
t/> 0. Employing the well-known expression 

D,,~16[ Yk~ ~ [ 4~~ k2 + y2 ] exp~ - ---h- [ 2m( Uo-')  ] 1/2) (B.5) 

for the penetrability coefficient D of the barrier where y = [ 2 m ( U  o -  
E)]l/E/h, k o is the wave number, and c=hEk2/2m is the kinetic energy of a 
free particle of a mass m, which energy is assumed to coincide with 
E 2 = 4~r2h2/2ma 2, the energy of the initial state. We see that such a barrier 
would be practically impenetrable for a free particle of energy E 2 in our 
potential well. 
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An easy calculation shows that the SE has the following stationary 
solutions inside our potential well in the presence of the above barrier U0: 
one solution, q~(x), practically coincides with tP2(x ) = (2 /a )  1/z sin (2r 
outside (a/2-60,a/2+ 80), ~p~(x)~0 inside (a/2-60,a/2+ 60) (the same 
is true for ~b2(x ) inside (a/2-6o, a/2+6o) since 60~0); another solution, 
tp'l(x), of practically the same energy E 2 but corresponding to a wave 
function which is symmetrical with respect to point x = a/2 [tp ' l(a/2- A)= 
tp'l(a/2+A)], and so on. Having this in mind and applying the usual 
approach to nonstationary problems we find that after the instantaneous 
appearing of the barrier U 0 the new wave function of the particle will 
remain essentially equal to ~pi=~2(x). (The same is confirmed by a 
straightforward calculation with the help of the theory of nonstationary 
perturbations, giving practically zero transition probabilities in the first 
order.) 

Let us begin now to expand the barrier very slowly (adiabatically) 
compared to the characteristic periods corresponding to a typical distance 
between levels of essentially different energies E,~, keeping its height equal 
to the initial one (/~o 25) and the symmetry of the problem unchanged 
(owing to the symmetry of U(x) the wave function tp'l(x ), corresponding to 
E ~ E ~ E  z, will not play any role since its symmetry with respect to 
x = a/2 is different from the (anti)symmetry of qJ~(x), so that despite the 
presence of quasidegenerated levels the corresponding r in (B.3) will be 
equal to zero and the process is thus really adiabatic.) The wave function 
will remain, obviously, antisymmetric all the time and will practically 
coincide with the corresponding stationary wave functions in any moment 
t > 0. These wave functions, to a good approximation, represent half-peri- 
ods of sine curves to the left and to the right of the barrier and are 
approximately equal to 0 inside it. Then we reverse the process as in the 
wedge case and adiabatically come back to the initial width 260 of the 
barrier and "switch it off" instantaneously in some moment t = t' (this act 
corresponds to the removal of the edge of the wedge from point x = a/2 at 
moment t - t ' ) .  It is obvious that in this way we come essentially back to 
tpz(x ) in complete analogy with the former case. 

But this physical process has to localize the particle in one of the two 
possible regions of motion. Indeed, the stationary energy of the particle 
adiabatically varies in this process owing to its interaction with the 
expanding barrier. But owing to the impenetrability of the barrier (it can 
be as impenetrable as one would like if 80is chosen small enough- -U0~  
30 --2.5 ) the particle can interact with one of its walls only. The motion of 
this wall exactly will cause the variation of the particle's energy. From here 
immediately follows the same paradox as in the case of an absolutely 
impenetrable wedge described mathematically by moving zero boundary 
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conditions. One cannot assert that coherence between parts of a wave 
function can spring up from not knowing in which one of possible 
disconnected regions the particle really is if an objective process (exchange 
of energy) localizing it in one of these regions exists. 

It is easy to see that what one needs in fact in order to remove the 
difficulty is an initial incoherent mixture of two wave functions 

1 
~b+ (x, t)  = 2- ~ [ ~b'l(x) exp(-- iE;t/h) +_ ~b~(x) exp( - iE~t/h) ] (B.6) 

where, as we know, E;~E~. Indeed, it is obvious that such linear combina- 
tions give a half-period of a sine curve in one of the two regions (say, I) 
and is practically equal to zero in the other one (say, II). ~b(x,t) will 
become essentially not equal to 0 in II for a practically infinite period of 
time in the presence of the barrier; the reader can easily transform our 
words into specific numbers. The SE and the usual mathematical prescrip- 
tion of working with initial conditions for the wave function cannot 
transform the initial wave function into the necessary mixture of noncohe- 
rent alternatives. What leads to such a mixture is an HV way of reasoning: 
In moment t = 0 the particle is either in I or in II and not in I and II at the 
same time according to current notions. The appearing of the barrier will 
fix this location without a noticeable influence on the particle's energy. 
The subsequent removal of the barrier will lead to practically the same 
picture as the one in the wedge case with noncoherent alternatives. 
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